Atypical functional properties of GluK3-containing kainate receptors.

نویسندگان

  • David Perrais
  • Françoise Coussen
  • Christophe Mulle
چکیده

The properties of synaptic receptors determine their mode of action at presynaptic and postsynaptic loci. Here, we investigated the atypical biophysical properties of GluK3-containing kainate receptors, which contribute to presynaptic facilitation at hippocampal mossy fiber synapses. We show, using fast glutamate applications on outside-out patches and kinetic modeling, that the low sensitivity of GluK3 receptors for glutamate is attributable to fast desensitization of partially bound receptors. Consequently, these receptors can only be activated by fast transients of high glutamate concentration. In addition, GluK3 receptors are very sensitive to voltage-dependent block by intracellular spermine that precludes activation of substantial currents at potentials positive to -50 mV. Two specific residues within the channel pore define this high-affinity site. Finally, GluK3 are calcium permeable in the same way as unedited GluK2 receptors. These receptors present unique properties among AMPA/kainate receptors that could reflect a specialized presynaptic function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zinc Potentiates GluK3 Glutamate Receptor Function by Stabilizing the Ligand Binding Domain Dimer Interface

Kainate receptors (KARs) play a key role in the regulation of synaptic networks. Here, we show that zinc, a cation released at a subset of glutamatergic synapses, potentiates glutamate currents mediated by homomeric and heteromeric KARs containing GluK3 at 10-100 μM concentrations, whereas it inhibits other KAR subtypes. Potentiation of GluK3 currents is mainly due to reduced desensitization, a...

متن کامل

Mapping the ligand binding sites of kainate receptors: molecular determinants of subunit-selective binding of the antagonist [3H]UBP310.

Kainate receptors (KARs) modulate synaptic transmission and plasticity, and their dysfunction has been linked to several disease states such as epilepsy and chronic pain. KARs are tetramers formed from five different subunits. GluK1-3 are low affinity kainate binding subunits, whereas GluK4/5 bind kainate with high affinity. A number of these subunits can be present in any given cell type, and ...

متن کامل

Mapping the Ligand Binding Sites of Kainate Receptors: Molecular Determinants of Subunit-Selective Binding of the Antagonist [H]UBP310

Kainate receptors (KARs) modulate synaptic transmission and plasticity, and their dysfunction has been linked to several disease states such as epilepsy and chronic pain. KARs are tetramers formed from five different subunits. GluK1–3 are low affinity kainate binding subunits, whereas GluK4/5 bind kainate with high affinity. A number of these subunits can be present in any given cell type, and ...

متن کامل

Endocytosis of the glutamate receptor subunit GluK3 controls polarized trafficking.

Kainate receptors (KARs) are widely expressed in the brain and are present at both presynaptic and postsynaptic sites. GluK3-containing KARs are thought to compose presynaptic autoreceptors that facilitate hippocampal mossy fiber synaptic transmission. Here we identify molecular mechanisms that underlie the polarized trafficking of KARs composed of the GluK3b splice variant. Endocytosis followe...

متن کامل

Determination of kainate receptor subunit ratios in mouse brain using novel chimeric protein standards.

Kainate-type glutamate receptors (KARs) are tetrameric channels assembled from GluK1-5. GluK1-3 are low-affinity subunits that form homomeric and heteromeric KARs, while GluK4 and GluK5 are high-affinity subunits that require co-assembly with GluK1-3 for functional expression. Although the subunit composition is thought to be highly heterogeneous in the brain, the distribution of KAR subunits a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 49  شماره 

صفحات  -

تاریخ انتشار 2009